分类:ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing

来自Big Physics
Jinshanw讨论 | 贡献2020年11月25日 (三) 09:28的版本 (创建页面,内容为“Category:文献讨论 分类:AllenAI系列科学学文章 分类:引文骨架挖掘 Mark Neumann, Daniel King, Iz Beltagy, Waleed Ammar. ScispaCy: Fast...”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)


Mark Neumann, Daniel King, Iz Beltagy, Waleed Ammar. ScispaCy: Fast and Robust Models for Biomedical Natural Language Processing. BioNLP@ACL 2019


Abstract

Despite recent advances in natural language processing, many statistical models for processing text perform extremely poorly under domain shift. Processing biomedical and clinical text is a critically important application area of natural language processing, for which there are few robust, practical, publicly available models. This paper describes scispaCy, a new Python library and models for practical biomedical/scientific text processing, which heavily leverages the spaCy library. We detail the performance of two packages of models released in scispaCy and demonstrate their robustness on several tasks and datasets. Models and code are available at https://allenai.github.io/scispacy/.

总结和评论

这篇文章对引用动机做了识别,也提供了一个用来训练引文动机识别模型的数据库。

概念地图

本分类目前不含有任何页面或媒体文件。