分类:The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction

来自Big Physics
Jinshanw讨论 | 贡献2020年11月17日 (二) 11:16的版本 (创建页面,内容为“ Category:文献讨论 分类:AllenAI系列科学学文章 分类:概念抽取和概念关系挖掘 Waleed Ammar, Matthew E. Peters, Chandra Bhagavatula...”)
(差异) ←上一版本 | 最后版本 (差异) | 下一版本→ (差异)


Waleed Ammar, Matthew E. Peters, Chandra Bhagavatula, R. Power, The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction


Abstract

This paper describes our submission for the ScienceIE shared task (SemEval2017 Task 10) on entity and relation extraction from scientific papers. Our model is based on the end-to-end relation extraction model of Miwa and Bansal (2016) with several enhancements such as semi-supervised learning via neural language models, character-level encoding, gazetteers extracted from existing knowledge bases, and model ensembles. Our official submission ranked first in end-to-end entity and relation extraction (scenario 1), and second in the relation-only extraction (scenario 3).

总结和评论

这篇文章实现了一些科学论文中的概念和关系提取算法。

本分类目前不含有任何页面或媒体文件。