分类:PaperRobot: Incremental Draft Generation of Scientific Ideas
Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin Knight, Heng Ji, Mohit Bansal, Yi Luan, PaperRobot: Incremental Draft Generation of Scientific Ideas, arXiv:1905.07870
Abstract
We present a PaperRobot who performs as an automatic research assistant by (1) conducting deep understanding of a large collection of human-written papers in a target domain and constructing comprehensive background knowledge graphs (KGs); (2) creating new ideas by predicting links from the background KGs, by combining graph attention and contextual text attention; (3) incrementally writing some key elements of a new paper based on memory-attention networks: from the input title along with predicted related entities to generate a paper abstract, from the abstract to generate conclusion and future work, and finally from future work to generate a title for a follow-on paper. Turing Tests, where a biomedical domain expert is asked to compare a system output and a human-authored string, show PaperRobot generated abstracts, conclusion and future work sections, and new titles are chosen over human-written ones up to 30%, 24% and 12% of the time, respectively.
总结和评论
这篇文章[1]选择了16个词(选择、竞争、义务、分配、获取、私家、付出、公家、自主、天赋、服从、刻苦、创新、公平、帮助、牺牲),从google ngram viewer得到这16个词的使用频率时间序列,进一步计算这些时间序列和经济指标的相关性,从而得到中国文化从“集体主义”到“个人主义”的转变。
[2]选择了更多的词来研究同样的现象。
进一步研究
选择任何一个现象,以及和这个现象相关的一组词,都可以用词频时间序列来看一下这个现象的时间演化。随着word2vec技术的发展,我们甚至可以从这一组词出发做细分做扩张、研究最相近的其他词,来做更好的词频统计。
参考文献
- ↑ Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin Knight, Heng Ji, Mohit Bansal, Yi Luan, PaperRobot: Incremental Draft Generation of Scientific Ideas, arXiv:1905.07870. https://arxiv.org/abs/1905.07870
- ↑ 引用错误:无效
<ref>
标签;未给name属性为Zhang
的引用提供文字
本分类目前不含有任何页面或媒体文件。