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The origins of human abilities for mathematics are debated: Some
theories suggest that they are founded upon evolutionarily ancient
brain circuits for number and space and others that they are
grounded in language competence. To evaluate what brain systems
underlie higher mathematics, we scanned professional mathemati-
cians and mathematically naive subjects of equal academic standing
as they evaluated the truth of advanced mathematical and non-
mathematical statements. In professional mathematicians only,
mathematical statements, whether in algebra, analysis, topology
or geometry, activated a reproducible set of bilateral frontal, Intra-
parietal, and ventrolateral temporal regions. Crucially, these activa-
tions spared areas related to language and to general-knowledge
semantics. Rather, mathematical judgments were related to an
amplification of brain activity at sites that are activated by numbers
and formulas in nonmathematicians, with a corresponding reduc-
tion in nearby face responses. The evidence suggests that high-level
mathematical expertise and basic number sense share common
roots in a nonlinguistic brain circuit.

mathematical cognition | semantic judgment | functional MRI

The human brain is unique in the animal kingdom in its ability
to gain access to abstract mathematical truths. How this

singular cognitive ability evolved in the primate lineage is cur-
rently unknown. According to one hypothesis, mathematics, like
other cultural abilities that appeared suddenly with modern hu-
mans in the upper Paleolithic, is an offshoot of the human lan-
guage faculty—for Noam Chomsky, for instance, “the origin of
the mathematical capacity [lies in] an abstraction from linguistic
operations” (1). Many mathematicians and physicists, however,
disagree and insist that mathematical reflection is primarily
nonlinguistic—Albert Einstein, for instance, stated: “Words and
language, whether written or spoken, do not seem to play any
part in my thought processes.” (2).
An alternative to the language hypothesis has emerged from

recent cognitive neuroscience research, according to which
mathematics arose from an abstraction over evolutionarily an-
cient and nonlinguistic intuitions of space, time, and number (3,
4). Indeed, even infants and uneducated adults with a drastically
impoverished language for mathematics may possess abstract
protomathematical intuitions of number, space, and time (5, 6).
Such “core knowledge” is predictive of later mathematical skills
(7–9) and may therefore serve as a foundation for the construction
of abstract mathematical concepts (10). Advanced mathematics
would arise from core representations of number and space through
the drawing of a series of systematic links, analogies, and inductive
generalizations (11–14).
The linguistic and core-knowledge hypotheses are not necessarily

mutually exclusive. Linguistic symbols may play a role, possibly
transiently, in the scaffolding process by which core systems are
orchestrated and integrated (10, 15). Furthermore, mathematics
encompasses multiple domains, and it seems possible that only
some of them may depend on language. For instance, geometry and
topology arguably call primarily upon visuospatial skills whereas

algebra, with its nested structures akin to natural language syntax,
might putatively build upon language skills.
Contemporary cognitive neuroscience has only begun to in-

vestigate the origins of mathematical concepts, primarily through
studies of basic arithmetic. Two sets of brain areas have been asso-
ciated with number processing. Bilateral intraparietal and prefrontal
areas are systematically activated during number perception and
calculation (16), a circuit already present in infants and even in
untrained monkeys (17). Additionally, a bilateral inferior temporal
region is activated by the sight of number symbols, such as Arabic
numerals, but not by visually similar letters (18). Those regions lie
outside of classical language areas, and several functional MRI
(fMRI) studies have confirmed a double dissociation between the
areas involved in number sense and language (19, 20). Only a
small part of our arithmetic knowledge, namely the rote memory
for arithmetic facts, encoded in linguistic form (16, 21). The bulk
of number comprehension and even algebraic manipulations can
remain preserved in patients with global aphasia or semantic de-
mentia (22–24). Contrary to intuition, brain-imaging studies of the
processing of nested arithmetic expressions show little or no overlap
with language areas (25–27). Thus, conceptual understanding of
arithmetic, at least in adults, seems independent of language.
Many mathematicians, however, argue that number concepts

are too simple to be representative of advanced mathematics. To
address this criticism, here we study the cerebral representation
of high-level mathematical concepts in professional mathematicians.

Significance

Our work addresses the long-standing issue of the relationship
between mathematics and language. By scanning professional
mathematicians, we show that high-level mathematical reasoning
rests on a set of brain areas that do not overlap with the classical
left-hemisphere regions involved in language processing or verbal
semantics. Instead, all domains of mathematics we tested (alge-
bra, analysis, geometry, and topology) recruit a bilateral network,
of prefrontal, parietal, and inferior temporal regions, which is also
activated when mathematicians or nonmathematicians recognize
and manipulate numbers mentally. Our results suggest that high-
level mathematical thinking makes minimal use of language areas
and instead recruits circuits initially involved in space and number.
This result may explain why knowledge of number and space,
during early childhood, predicts mathematical achievement.

Author contributions: M.A. and S.D. designed research; M.A. performed research; M.A.
and S.D. analyzed data; and M.A. and S.D. wrote the paper.

Reviewers: D.A., Western University, Brain and Mind Institute; and M.M., University of
California, Los Angeles, Department of Psychology.

The authors declare no conflict of interest.

See Commentary on page 4887.
1To whom correspondence may be addressed. Email: marie.amalric@cea.fr or stanislas.
dehaene@cea.fr.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1603205113/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1603205113 PNAS | May 3, 2016 | vol. 113 | no. 18 | 4909–4917

PS
YC

H
O
LO

G
IC
A
L
A
N
D

CO
G
N
IT
IV
E
SC

IE
N
CE

S
N
EU

RO
SC

IE
N
CE

IN
A
U
G
U
RA

L
A
RT

IC
LE

SE
E
CO

M
M
EN

TA
RY

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

O
ct

ob
er

 1
2,

 2
02

1 

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1603205113&domain=pdf
mailto:marie.amalric@cea.fr
mailto:stanislas.dehaene@cea.fr
mailto:stanislas.dehaene@cea.fr
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603205113/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1603205113/-/DCSupplemental
www.pnas.org/cgi/doi/10.1073/pnas.1603205113
psywu
下划线

psywu
高亮

psywu
下划线

psywu
高亮



We collected fMRIs in 15 professional mathematicians and 15
nonmathematician controls of equal academic standing while par-
ticipants performed fast semantic judgments on mathematical and
nonmathematical statements (Fig. 1A). On each trial, a short spo-
ken sentence was followed by a 4-s reflection period during which
the participants decided whether the statement was true, false, or
meaningless. Meaningful and meaningless statements were
matched on duration and lexical content, but meaningless
statements could be quickly dismissed, whereas meaningful

statements required in-depth thinking, thus presumably activat-
ing brain areas involved in conceptual knowledge. Statements
were generated with the help of professional mathematicians and
probed four domains of higher mathematics: analysis, algebra,
topology, and geometry. A fifth category of nonmath sentences,
matched in length and complexity, probed general knowledge of
nature and history. Two additional fMRI runs evaluated sen-
tence processing and calculation (28) and the visual recognition
of faces, bodies, tools, houses, numbers, letters, and written
mathematical expressions.

Results
Behavior. Math and nonmath problems were well-matched in
objective difficulty level because mathematicians performed
identically on both (63% and 65% correct) (Fig. 1B and SI Ap-
pendix, Supplementary Results). Mathematicians quickly sepa-
rated the meaningful from the meaningless statements (Fig. 1C)
(all d′ > 2). Judging the truth value of the meaningful statements
was more challenging (d′ < 1), yet mathematicians’ performance
remained above chance in both conditions (Fig. 1D). Control
subjects performed well with nonmath statements, achieving the
same performance level as mathematicians (64% correct). Un-
surprisingly, they fell close to chance level with math (37%
correct, chance level = 33%; P = 0.014): They managed to per-
form above chance in detecting which statements were meaningful
or meaningless (d′ = 0.67, P = 0.002) but could not identify their
truth value (d′ = 0.38, n.s.).
Although objective performance on nonmath problems did not

differ for mathematicians and controls, their subjective ratings of
comprehension, confidence, or difficulty, collected after the fMRI
session, revealed that each group felt more comfortable with its
respective expertise domain (see SI Appendix for details).
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Fig. 1. Main paradigm and behavioral results. (A) On each trial, subjects
listened to a spoken statement and, 4 s later, classified it as true, false, or
meaningless. (B) Performance in this task (% correct). (C and D) Mean d′
values for discrimination of meaningful versus meaningless statements (C)
and, within meaningful statements, of true versus false statements (D). *P <
0.05 (Student t tests). Error bars represent one SEM.
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Fig. 2. Distinct brain areas for mathematical expertise and for general semantic knowledge. (A) Whole-brain view of areas activated during reflection on
mathematical statements (blue) versus general knowledge (green). In this figure and all subsequent figures, brain maps are thresholded at voxel P < 0.001,
cluster P < 0.05 corrected for multiple comparisons across the brain volume. (B) Mathematical expertise effect: Interaction indicating a greater difference
between meaningful math and nonmath statements in mathematicians than in controls. (C and D) Average fMRI signals in representative areas responsive to
math (C) and to nonmath (D) (see SI Appendix, Fig. S1 for additional areas). Black rectangles indicate sentence presentation.
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fMRI Activations Associated with Mathematical Reflection. Within
the group of professional mathematicians, we first searched for
greater activations to math than to nonmath judgments during
the reflection period. This contrast identified an extensive set of
areas involving the bilateral intraparietal sulci (IPS), bilateral
inferior temporal (IT) regions, bilateral dorsolateral, superior,
and mesial prefrontal cortex (PFC), and cerebellum (Fig. 2 and
SI Appendix, Table S1). All four domains of mathematics acti-
vated those regions, as revealed by a significant intersection of
activations to each domain (Fig. 3A) (each at P < 0.001). The
only detectable differences among problems were a small additional
activation in posterior IT and IPS for geometry relative to non-
geometry problems, and an increased activity in left IT and intra-
occipital sulcus for problems subjectively rated as easier to visualize
(Fig. 3 and SI Appendix, Supplementary Results and Table S2).
Examination of the time course of activity indicated that, at all

sites of the shared math network, the fMRI signal rose sharply
after a mathematical statement and remained sustained for ∼15 s
(Fig. 2C and SI Appendix, Fig. S1). Contrariwise, for non-
mathematical statements, a slow deactivation was seen (Fig. 2C).
Thus, this network was strongly activated by all domains of
mathematics but remained inactive during reflection on matched
nonmathematical problems. Furthermore, an interaction with
group (math > nonmath × mathematicians > controls) showed
that this activation pattern was unique to subjects with mathe-
matical expertise (Fig. 2B and SI Appendix, Table S1). In control
subjects, the math > nonmath contrast yielded a different set of
regions that overlapped with the sites activated by meaningless
nonmath statements (SI Appendix, Fig. S2 and Table S1), suggesting
that math statements sounded like gibberish to nonmathematicians.

As a second criterion for brain areas involved in mathematical
expertise, we compared the activations during reflection on
meaningful versus meaningless mathematical statements. This
contrast, which is orthogonal to the previous one and controls for
lexical content, fully replicated the above results. In mathema-
ticians, activation was stronger in bilateral IPS, IT, and PFC for
meaningful than for meaningless math statements (Fig. 4A and
SI Appendix, Table S1), with the latter inducing only a transient
activation in most areas (Fig. 4C, no activation at all in right IPS,
and SI Appendix, Fig. S3). The same contrast yielded no signif-
icant difference in controls, resulting in a significant group ×
meaningfulness interaction in the same brain regions (Fig. 4B
and SI Appendix, Table S1).

Controls for Task Difficulty. The activations observed during
mathematical reflection overlap with a set of areas that have
been termed the “multiple demand system” (29). Those regions
are active during a variety of cognitive tasks that involve execu-
tive control and task difficulty (30). It is therefore important to
evaluate whether our results can be imputed to a greater task
difficulty for math relative to nonmath statements. As noted in
the behavioral section, objective task difficulty, as assessed by
percent correct, was not different for math and nonmath state-
ments within the mathematicians, and for nonmath statements
across the two groups of mathematicians and control subjects.
However, subjective difficulty, as reported by mathematicians
after the fMRI, was judged as slightly higher for the math
problems than for the nonmath problems (on a subjective scale
converted to a 0–100 score: subjective difficulty = 52.4 ± 3.4 for
math, and 40.0 ± 4.5 for nonmath; t = 2.4, P = 0.03). Never-
theless, several arguments suggest that this small difference fails
to account for our brain-activation results.
First, once the meaningless statements were excluded, difficulty

did not differ significantly between meaningful math and nonmath
statements (subjective difficulty = 53.9 ± 2.8 for meaningful math,
versus 49.4 ± 4.7 for meaningful nonmath; t = 0.8, P = 0.5). In
other words, the small difference in subjective difficulty (math >
nonmath) was due only to the greater perceived simplicity of the
meaningless general-knowledge statements, whose absurdity was
more immediately obvious than that of meaningless math state-
ments. However, when we excluded the meaningless statements
from the fMRI analysis, the difference in brain activation between
math and nonmath statements remained and was in fact larger for
meaningful than for meaningless statements (Figs. 2 and 4).
Second, to directly evaluate the impact of difficulty on the

observed brain networks, within each subject, we sorted the
meaningful math and nonmath statements into two levels of sub-
jective difficulty (easy or difficult: i.e., below or above the subject’s
mean of the corresponding category). As expected, the easiest
math statements were rated as much easier than the difficult
nonmath statements (Fig. 5A). Despite this difference, the
contrast of meaningful easy math > meaningful difficult
nonmath again revealed the same sites as the ones that were
activated for the standard math > nonmath contrast (Fig. 5B).
Thus, those sites were activated even during simple mathemati-
cal reflection, and their greater activation for math than for
nonmath occurred irrespective of task difficulty. Indeed, the time
course of fMRI signals in the five main regions identified by the
math > nonmath contrast (Fig. 5C) showed no effect of difficulty.
This result was confirmed by the contrast of difficult > easy math
and difficult > easy nonmath, which revealed no significant sites.
Similar results were obtained when problems were sorted by ob-
jective performance (SI Appendix, Fig. S4).

Dissociation with the Areas Activated During Nonmathematical
Reflection. We next examined which regions were activated by
nonmath statements. Pooling across the two groups, areas activated
bilaterally by nonmath > math reflection included the inferior
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Fig. 3. Variation in brain activation across mathematical problems.
(A) Cortical sites where responses were common (red) or different (yellow)
between analysis, algebra, topology, and geometry. The commonalities of the
four mathematical domains were assessed by the intersection of activation
maps for the contrasts analysis > nonmath, algebra > nonmath, topology >
nonmath, and geometry > nonmath (each P < 0.001). Differences in cortical
responses across mathematical domains were evaluated by an F-test at the
whole-brain level (voxel P < 0.001, cluster P < 0.05 corrected). Bar plots show
the activation for each mathematical domain at the principal peaks of three
main regions identified in the latter F-contrast (R posterior parietal, L and R
infero-temporal). (B) Cortical sites that showed a positive correlation between
activation during math reflection and subjective imageability ratings within
the meaningful statements in mathematicians.
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angular gyrus (AG), near the temporo/parietal junction, the
anterior part of the middle temporal gyrus (aMTG), the ventral
inferior frontal gyrus [IFG pars orbitalis, overlapping Brodmann
area (BA) 47], an extended sector of mesial prefrontal cortex
(PFC) (mesial parts of BA 9, 10, and 11), and cerebellum Crus I
(Fig. 2A and SI Appendix, Fig. S5 and Table S3), consistent with
previous studies of semantic networks (19, 31). The majority of
these regions showed no difference between groups (SI Appen-
dix, Table S3). Their time course indicated a significant activa-
tion just after nonmath statements and a systematic deactivation
to all four types of math statements (Fig. 2D). The contrast
meaningful > meaningless nonmath statements, which provides
an orthogonal means of identifying general-knowledge seman-
tics, pointed to virtually the same sites (Fig. 4A and SI Appendix,
Table S3) and did not differ across groups (SI Appendix, Fig. S6
and Table S3).
Thus, two converging criteria identified a reproducible set of

bilateral cortical areas associated with mathematical expertise and
that differ from the classical language semantics network. The
dissociation, within mathematicians, between the networks for
math and nonmath, was tested formally through the appropriate
interactions: i.e., (meaningful −meaningless math) – (meaningful –
meaningless nonmath) and the opposite contrast (SI Appendix,
Table S4). Stronger activations for meaningful math were again
seen in bilateral IT, bilateral IPS, right posterior superior frontal,
and left lateral IFG/middle frontal gyrus (MFG) whereas stronger
activations for meaningful nonmath were in right posterior supe-
rior temporal sulcus (pSTS)/AG, bilateral anterior MTG, and
ventro-mesial PFC. Crucially, there was essentially no intersection
at P < 0.001 of the areas for meaningful > meaningless math and
for meaningful > meaningless nonmath (Fig. 4A and SI Appendix,
Tables S1 and S3). The only small area of intersection, suggesting
a role in generic reflection and decision making, was observed
outside the classical language network, in bilateral superior frontal
(BA 8) and left inferior MFG. Even at a lower threshold (P < 0.01

uncorrected), the intersection extended to part of posterior parietal
and dorsal PFC but spared perisylvian language cortex.

Activation Profile in Language Areas. To further probe the contri-
bution of language areas to math, we used a sensitive region-of-
interest (ROI) analysis. We selected left-hemispheric regions
previously reported (32) as showing a language-related activation
proportional to constituent size during sentence processing
[temporal pole (TP); anterior superior temporal sulcus (aSTS);
posterior superior temporal sulcus (pSTS); temporo-parietal
junction (TPj); inferior frontal gyrus pars orbitalis (IFGorb), and
pars triangularis (IFGtri)], plus the left Brodmann area 44 (33).
We then used an independent functional localizer (28) to iden-
tify subject-specific peaks of activation to sentences (spoken or
written) relative to rest and finally tested the contribution of
those language voxels to the main reasoning task. All regions
were activated during sentence presentation (SI Appendix, Fig.
S7), either identically across conditions, or more for nonmath
than for math and/or for controls than for mathematicians (SI
Appendix, Table S5). Thus, if anything, mathematics called less
upon those language regions than did general semantic reason-
ing. Whole-brain imaging confirmed a near-complete spatial
separation of areas activated by mathematical judgments and by
sentence processing (SI Appendix, Fig. S8). A very small area of
overlap could be seen in the left dorsal Brodmann area 44 (SI
Appendix, Fig. S8B), an area also singled out in previous reports
(34) and which should certainly be further investigated in future
research. Note, however, that this small overlap was present only
in smoothed group images and failed to reach significance in
higher resolution single-subject results (SI Appendix, Table S5).

Relationships Between Mathematics, Calculation, and Number Detection.
We next examined the alternative hypothesis of a systematic re-
lationship between advanced mathematics and core number
networks. To this aim, we compared the activations evoked by math
versus nonmath reflection in mathematicians, with the activations
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Fig. 4. Math and nonmath semantic effects. (A) Whole-brain view of semantic effects (meaningful > meaningless) for math statements in professional mathe-
maticians (blue) and for nonmath statements in both groups (green). (B) Mathematical expertise effect: Interaction indicating a large difference between meaningful
and meaningless math statements in mathematicians than in controls. (C and D) Average fMRI signals in representative areas responsive to math (C) and to nonmath
(D) (see SI Appendix, Figs. S3 and S6 for additional areas).
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evoked either by calculation relative to sentence processing (28) or
by numbers relative to other visual categories in both mathe-
maticians and controls (after verifying that these groups did not
differ significantly on the latter contrasts). Both calculation and
simple number processing activated bilateral IPS and IT, thus
replicating early observations of number-sense and number-
form areas (Fig. 6). Remarkably, those activations overlapped
entirely with the regions activated by higher level mathematics
in mathematicians only (Fig. 6).
Our mathematical statements carefully avoided any direct

mention of numbers or arithmetic facts (SI Appendix), but some
still contained an occasional indirect reference to numbers or to
fractions (e.g., R2, unit sphere, semi-major axis, etc). We there-
fore reanalyzed the results after systematic exclusion of such
statements. The activation evoked by mathematical reflection
remained virtually unchanged (SI Appendix, Fig. S9 and Table
S6). Thus, the overlapping activations to number and to ad-
vanced math cannot be explained by a shared component of
numerical knowledge but indicate that high-level mathematics
recruits the same brain circuit as basic arithmetic.
Because group-level overlap of activation can arise artificially

from intersubject averaging, we next turned to more sensitive
within-subject analyses. First, within each of four regions of in-
terest (left and right IPS and IT) identified from an independent
calculation localizer (28), we verified that the subject-specific
voxels activated during simple arithmetic also showed a significant
activation during mathematical reflection and during number and
formula recognition, and did so more than in the corresponding
control conditions (respectively, nonmath reflection and non-
symbolic pictures) (SI Appendix, Table S7). Second, we used
representational similarity analysis to probe whether a similar

pattern of activation was evoked, within each subject, by all math-
related activities: i.e., mathematical reflection, calculation, and
numbers or formula recognition. For each subject, we first com-
puted the matrix of correlations between the activations evoked
by each of the experimental conditions (Fig. 7, Top). We then
compared the correlation coefficients across matched cells of
this matrix. The results revealed, first, that, in bilateral IPS and
IT, the activation topography during the reflection period was
more strongly correlated across the four domains of mathemat-
ical statements (analysis, algebra, topology, and geometry) than
between any of those domains and the general-knowledge non-
math statements. Second, the activation during mathematical
reflection was better correlated with the activation evoked by
simple arithmetical problem solving than with the activation
evoked by nonnumerical spoken or written sentences in left and
right IPS and IT. Third, it was also better correlated with the
activation during number recognition (in all four regions) and
formula recognition (in left IPS and bilateral IT) than with the
activation evoked by nonsymbolic pictures or by written words
(in bilateral IT only). Finally, in all four regions, the activation
during simple calculation was better correlated with the activa-
tion evoked by numbers or formulas, than with the activation
evoked by nonsymbolic pictures or written words (all Ps < 0.05)
(Fig. 7, Bottom and SI Appendix, Table S7; see SI Appendix,
Supplementary Results for results in additional regions).
Overall, these high-resolution single-subject analyses confirm

that advanced mathematics, basic arithmetic, and even the mere
viewing of numbers and formulas recruit similar and overlapping
cortical sites in mathematically trained individuals.

Activations During the Sentence-Listening Period. We also analyzed
activations during sentence listening, before the reflection pe-
riod. Our conclusions remained largely unchanged (see SI Ap-
pendix, Supplementary Results and Fig. S10 for details). Two
additional effects emerged only during sentence presentation.
First, a group × problem type interaction revealed a striking
group difference in the bilateral head of the caudate nucleus (SI
Appendix, Fig. S11). This region was active in mathematicians
only when they were exposed to math statements and, in control
subjects, only when they were exposed to nonmath statements.
Thus, the engagement of this subcortical region, which is known
to participate in motivation and executive attention, shifted
radically toward the subject’s preferred domain. Second, another
group difference concerned the left angular gyrus. It was

z = 52z = -14

Math > Non-math 
statements

Numbers > 
Other pictures

Calcula�on > 
Sentence processing

Intersec�on

Fig. 6. Overlap of the mathematical expertise network with areas involved
in number recognition and arithmetic. Red, contrast of math versus non-
math statements in mathematicians; green, contrast of Arabic numerals
versus all other visual stimuli in both mathematicians and controls; blue,
contrast of single-digit calculation versus sentence processing in the localizer
run, again in both groups; yellow, intersection of those three activation
maps (each at P < 0.001).
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Fig. 5. Control for task difficulty. For each subject, math and nonmath state-
ments were sorted into two levels of difficulty (easy versus difficult) depending
on whether their subjective rating was below or above the subject’s mean. (A)
Mean difficulty ratings for easy and difficult math and nonmath statements.
The results indicate that activation is organized according to domain (math
versus nonmath) rather than difficulty. (B) Axial slices showing the principal
regions activated in the contrast “easy math > difficult nonmath” in mathe-
maticians across all meaningful problems (voxel P < 0.001, cluster P < 0.05
corrected). This contrast revealed virtually the same sites as the ones that were
activated for the standard math > nonmath contrast. (C) Plots report the
temporal profile of activation at the principal peaks identified in the contrast of
math > nonmath in mathematicians (same coordinates as SI Appendix, Fig. S1).
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deactivated by meaningless compared with meaningful gen-
eral-knowledge statements in both groups, as previously
reported (32, 35). However, in mathematicians only, it also showed
a greater activation for meaningful than for meaningless math (SI
Appendix, Fig. S12). Thus, mathematical expertise enables the left
angular gyrus, which is engaged in sentence-level semantic integration
(35, 36), to extend this function to mathematical statements.
Importantly, this contribution is only transient, restricted to the
sentence comprehension period, because this area was deacti-
vated during mathematical reflection.

Differences Between Mathematicians and Controls in Ventral Visual
Cortex. Because high-level mathematics recruits ventral areas of
the inferior temporal gyrus involved in the recognition of num-
bers and expressions, a final question is whether the activation of
those regions varies as a function of mathematical expertise.
During a one-back task involving the visual presentations of
numbers, formulas, and other visual stimuli, both mathemati-
cians and controls showed a typical mosaic of ventral occipito-
temporal preferences for one category of visual stimuli over all
others (Fig. 8A and SI Appendix, Table S8). Those regions in-
cluded the right-hemispheric fusiform face area (FFA), bilateral
parahippocampal place areas (PPAs), bilateral extrastriate
body areas (EBAs), bilateral lateral occipital cortices for tools
(LOCs), and left-hemispheric visual word form area (VWFA).
Importantly, with high-resolution fMRI, we also found a strong
number-related activation in bilateral regions of the inferior
temporal gyrus, at sites corresponding to the left and right visual
number form areas (VNFAs) (18, 37). We also observed bilateral
responses to formulas > other stimuli in both groups at bilateral
sites partially overlapping the VNFA. A whole-brain search for
interactions with group (mathematicians versus controls) revealed
that some of these visual contrasts differed with mathematical
expertise. First, the left inferior temporal activation to written
mathematical formulas was significantly enhanced in mathemati-
cians relative to controls (−53 −64 −17, t = 4.27) (Fig. 8B). Single-
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subject ROI analyses verified that this effect was not simply due to
greater variance in anatomical localization in controls compared
with mathematicians, but to a genuine increase in the volume of
bilateral IT cortex activated by mathematical formulas (SI Ap-
pendix, Table S8). We presume that this region was already
present in control subjects because they had received higher
education and could therefore recognize basic arithmetic ex-
pressions that have been previously related to IT and IPS regions
(26). Just as reading expertise massively enhances the left ventral
visual response to written letter strings (38), mathematical ex-
pertise leads to a bilateral enhancement of the visual represen-
tation of mathematical symbols.
For numbers, no significant difference between groups was

observed using a whole-brain analysis. However, once identified
by the overall contrast “number > others,” the VNFA peak in
the left hemisphere exhibited a small but significant group dif-
ference, with more activation in mathematicians than in controls
for number > nonsymbolic pictures (i.e., excluding formulas and
words; t = 2.31, P = 0.028; no such effect was found at the peak
of the right VNFA). Both left and right VNFA also responded
more to formulas than to other stimuli in mathematicians rela-
tive to controls (left, t = 3.82, P < 0.001; right, t = 2.72, P = 0.01)
(Fig. 8E). Thus, mathematical expertise is associated with a small
expansion of number representations in the left VNFA and a
bilateral recruitment of the VNFA by mathematical formulas.
Finally, because literacy has been shown to induce a hemi-

spheric shift in face responses (38), we also examined face pro-
cessing in our mathematicians. Although there was no significant
difference between the two groups at the principal peak of the
right FFA, a whole-brain search indicated that responses to faces
were significantly reduced in mathematicians relative to controls
in right-hemispheric IT (44 −45 −17, t = 4.72) (Fig. 8D). There
was also an enhanced response to tools in mathematicians rel-
ative to controls in left LOC, just posterior to the activation by
formulas (−45 −73 −5, t = 5.12) (Fig. 8C). These intriguing
differences must be considered with caution because their
behavioral impact and causal link to mathematical training re-
mains presently unknown.

Discussion
Using high-resolution whole-brain fMRI, we observed the acti-
vation of a restricted and consistent network of brain areas
whenever mathematicians engaged in high-level mathematical
reflection. This network comprised bilateral intraparietal, in-
ferior temporal, and dorsal prefrontal sites. It was activated by all
domains of mathematics tested (analysis, algebra, topology, and
geometry) and even, transiently, by meaningless mathematical
statements. It remained silent, however, to nonmathematical state-
ments of matched complexity. Instead, such problems activated
distinct bilateral anterior temporal and angular regions.
Our main goal was to explore the relationships between high-

level mathematics, language, and core number networks. In
mathematicians, we found essentially no overlap of the math-
responsive network with the areas activated by sentence com-
prehension and general semantic knowledge. We observed,
however, a strong overlap and within-subject similarity of the
math-responsive network with parietal and inferior temporal
areas activated during arithmetic calculation and number rec-
ognition (SI Appendix, Table S7). In particular, bilateral ventral
inferior temporal areas corresponding to the visual number form
area (18, 37) were activated by high-level mathematics as well as
by the mere sight of numbers and mathematical formulas. The
latter activations were enhanced in mathematicians. Corre-
spondingly, a reduced activation to faces was seen in the right
fusiform gyrus. Those results are analogous to previous findings
on literacy, showing that the acquisition of expertise in reading
shifts the responses of left ventral visual cortex toward letters and
away from faces (38–40).

Our findings shed light on the roots of mathematical abilities.
Some authors have argued that mathematics rests on a recent
and specifically human ability for language and syntax (1) whereas
others have hypothesized that it is a cultural construction grounded
upon evolutionary ancient representations of space, time, and
number (3, 4, 12). In our task, language areas were activated only
transiently during the presentation of auditory statements,
whether mathematical or nonmathematical. Rather, the activa-
tions that we observed during mathematical reflection occurred in
areas previously associated with number coding in humans and
other animals. Bilateral intraparietal and dorsal prefrontal regions
are active during a variety of number-processing and calculation
tasks (16) and contain neurons tuned to numerical quantities (17).
Bilateral inferior temporal regions have been termed “visual
number form areas” (VNFAs) because they activate to written
Arabic numerals much more than to letter strings or other pictures
(18, 37). The VNFAs were previously difficult to detect with fMRI
because they lie close to a zone of fMRI signal loss (18). However,
using a fast high-resolution fMRI sequence that mitigates these
difficulties, we found that the VNFAs are easily detectable and are
activated bilaterally not only by Arabic numerals, but also by al-
gebraic formulas, arithmetic problems, and, in mathematicians
only, during high-level mathematical reasoning.
Although we investigated, within our subjects, only the re-

lationship between the cortical territories for high-level mathe-
matics, formulas, and number processing, previous work strongly
suggests that the representation of geometrical relationships and
visuo-spatial analogies also calls upon a similar bilateral dorsal
prefrontal and intraparietal network (41, 42). Indeed, represen-
tations of cardinal number, ordinal knowledge, and spatial extent
overlap in parietal cortex (43, 44). Given those prior findings,
our results should not be taken to imply that number is the sole
or even the main foundation of higher mathematical abilities;
more likely, a complex integration of numerical, ordinal, logical,
and spatial concepts is involved (12).
Although one might have thought that the relationship be-

tween language and math would depend strongly on the domain
of mathematics under consideration, we found no support for
this hypothesis. Except for a small additional activation in pos-
terior inferotemporal and posterior parietal cortex for geometry
statements, all problems in algebra, analysis, topology, and ge-
ometry induced correlated and overlapping activations that sys-
tematically spared language areas. Using elementary algebraic
and arithmetic stimuli, previous fMRI and neuropsychological
research in nonmathematicians also revealed a dissociation be-
tween mathematical and syntactic knowledge (19, 22, 26, 45).
Together, those results are inconsistent with the hypothesis that
language syntax plays a specific role in the algebraic abilities of
expert adults. Importantly, however, they do not exclude a
transient role for these areas in the acquisition of mathematical
concepts in children (10). Imaging studies of the learning process
would be needed to resolve this point.
Our results should not be taken to imply that the IPS, IT, and

PFC areas that activated during mathematical reflection are spe-
cific to mathematics. In fact, they coincide with regions previously
associated with a “multiple-demand” system (29) active in many
effortful problem-solving tasks (30) and dissociable from language-
related areas (46). Some have suggested that these regions form a
“general problem solving” or “general purpose network” active in
all effortful cognitive tasks (47). Several arguments, however,
question the idea that this network is fully domain-general. First,
we found no activation of this network during equally difficult
reasoning with nonmathematical semantic knowledge. In fact, the
easiest mathematical problems caused more activation than the
most difficult nonmathematical problems (Fig. 5), and even
meaningless mathematical problems caused more activation
than meaningful general-knowledge problems (Fig. 4). Second,
other studies have found a dissociation between tightly matched
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conditions of linguistic versus logical or arithmetical problem
solving (19, 48). Overall the existing literature suggests that the
network we identified engages in a variety of flexible, abstract,
and novel reasoning processes that lie at the core of mathe-
matical thinking, while contributing little to other forms of
reasoning or problem solving based on stored linguistic or
semantic knowledge.
Our conclusions rest primarily on within-subject comparisons

within the group of professional mathematicians (e.g., between
math and nonmath reasoning, meaningful and meaningless math,
etc.). As an additional control, we also presented the same stimuli
to a gender- and age-matched group of nonmathematically trained
but equally talented researchers and professors in humanities and
related disciplines. Although mathematicians and controls may
still differ on dimensions such as IQ, musical talent, hobbies, etc.,
such putative differences are irrelevant to our main conclusion of
a dissociation between general-knowledge and mathematical rea-
soning within the mathematicians. They also seem unlikely to
account for the enhanced ventral visual responses to numbers and
math formulas, which most plausibly reflect the much higher
frequency with which mathematicians process such symbols.
Previous explorations of the brain mechanisms underlying

professional-level mathematics are scarce. One fMRI study
scanned 15 professional mathematicians, focusing entirely on
their subjective sense of beauty for math expressions (49). The
results revealed a medial orbito-frontal correlate for this sub-
jective feeling but could not determine which brain areas are
responsible for the mathematical computations that precede it.
The network we observed seems to be a plausible candidate that
should be tested in further work.
The regions we observed also fit with the sites showing in-

creased gray matter in mathematicians relative to control sub-
jects of equal academic standing (50). During elementary
problem-solving tasks, fronto-parietal activations at locations
similar to ours were enhanced in mathematically gifted sub-
jects (51). Interindividual variations in this network predict
corresponding variations in fluid intelligence (29, 52), which is a
major correlate of mathematical skills independently of other
language skills. The connectivity between those regions, medi-
ated by the superior longitudinal fasciculus, also increases in the
course of normal numerical and mathematical education and in
mathematically gifted students relative to others (53–55).
The fact that these brain areas are jointly involved in higher

mathematics and basic arithmetic may explain the bidirectional
developmental relationships that have been reported between
prelinguistic number skills and later mathematical skills, whereby
intuitive number sense predicts subsequent mathematical scores
at school (7–9, 56) and, conversely, mathematical education
enhances the precision of the nonverbal approximate number
system (57). Educational research also provides ample correla-
tional and interventional evidence suggesting that early visuo-
spatial and numerical skills can predict later performance in
mathematics. The present results provide a putative brain mech-
anism through which such links may arise.

Methods
Participants.We scanned a total of 30 French adult participants. Fifteen were
professional mathematicians (11 male, 4 female, age range 24–39 y, mean =
28.1 y), and 15 were humanities specialists (10 male, 5 female, age range 24–50 y,
mean = 30.1 y). Their ages did not significantly differ (t = 0.8397, P = 0.41).

Professional mathematicians were full-time researchers and/or professors of
mathematics. All had a PhD in mathematics and/or had passed the French na-
tional examination called “aggregation,” which is the last qualification exam-
ination for professorship. The 15 control subjects had the same education level
but had specialized in humanities and had never received any mathematical
courses since high school. Their disciplines were as follows: literature (n = 3),
history (n = 3), philosophy (n = 1), linguistics (n = 2), antiquity (n = 1), graphic
arts and theater (n= 3), communication (n= 1), and heritage conservation (n= 1).
All subjects gave written informed consent andwere paid for their participation.

The experiment was approved by the regional ethical committee for biomedical
research (Comité de Protection des Personnes, Hôpital de Bicêtre).

Visual Runs. Seven categories of images were presented: faces, houses, tools,
bodies, words, numbers, andmathematical formulas, plus a control condition
consisting of circular checkerboards whose retinotopic extent exceeded that
of all other stimuli (see SI Appendix for details).

Auditory Runs. Subjects were presented with 72 mathematical statements (18
in each of the fields of analysis, algebra, topology, and geometry) and 18
nonmathematical statements. Within each category, 6 statements were true,
6 were false, and 6 were meaningless. All meaningless statements (in math or
nonmath)were grammatically correct but consisted inmeaningless associations
of words extracted from unrelated meaningful statements. All meaningful
statements bore upon nontrivial facts that were judged unlikely to be stored in
rote long-term memory and therefore required logical reflection. Reference to
numbers or to other mathematical concepts (e.g., geometrical shapes) was
purposely excluded. A complete list of statements, translated from the original
French, is presented in SI Appendix.

All statements were recorded by a female native French speaker who was
familiar with mathematical concepts. Statements from the different cate-
gories were matched in syntactic construction, length (mean number of
words: math = 12.4, nonmath = 12.6, t = 0.24, P = 0.81), and duration (mean
duration in seconds: math = 4.70, nonmath = 4.22, t = 1.93, P = 0.056).

The experiment was divided into six runs of 15 statements each, which
included one exemplar of each subcategory of statements [5 categories
(analysis, algebra, geometry, topology, or general knowledge) × 3 levels
(true, false, or meaningless)]. On screen, the only display was a fixation cross
on a black background. Each trial started with a beep and a color change of
the fixation cross (which turned to red), announcing the onset of the
statement. After auditory presentation, a fixed-duration reflection period
(4 s) allowed subjects to decide whether the statement was true, false, or
meaningless. The end of the reflection period was signaled with a beep and
the fixation cross turning to green. Only then, for 2 s, could subjects give
their evaluation of the sentence (true, false, or meaningless) by pressing one
of three corresponding buttons (held in the right hand). Each trial ended
with a 7-s resting period (Fig. 1A).

Localizer Scan. This 5-min fMRI scan is described in detail elsewhere (20). For
present purposes, only two contrasts were used: language processing (sen-
tence reading plus sentence listening relative to rest) and mental calculation
(mental processing of simple subtraction problems, such as 7 − 2, presented
visually or auditorily, and contrasted to the processing of nonnumerical vi-
sual or auditory sentences of equivalent duration and complexity).

Post-MRI Questionnaire. Immediately after fMRI, all of the statements that
had been presented during fMRI were reexamined in the same order. For
each of them, participants were asked to rate the following: their compre-
hension of the problem itself within the noisy environment of the fMRI
machine, their confidence in their answer, whether the response was a well-
known fact or not (variable hereafter termed “immediacy”), the difficulty of
the statement, its “imageability,” and the kind of reasoning that they had
used on an axis going from pure intuition to the use of a formal proof.

fMRI Data Acquisition and Analysis. We used a 3-Tesla whole body system
(Siemens Trio) with a 32-channel head-coil and high-resolution multiband
imaging sequences developed by the Center for Magnetic Resonance Re-
search (CMRR) (58) [multiband factor = 4, Grappa factor = 2, 80 interleaved
axial slices, 1.5-mm thickness and 1.5-mm isotropic in-plane resolution, ma-
trix = 128 × 128, repetition time (RT) = 1,500 ms, echo time (ET) = 32 ms].

Using SPM8 software, functional images were first realigned, normalized
to the standard Montreal Neurological Institute (MNI) brain space, and
spatially smoothed with an isotropic Gaussian filter of 2 mm FWHM.

A two-level analysis was then implemented in SPM8 software. For each par-
ticipant, fMRI imageswere high-pass filtered at 128 s. Then, time series fromvisual
runsweremodeled by regressors obtained by convolution of the eight categories
of pictures plus the button presses with the canonical SPM8 hemodynamic re-
sponse function (HRF) and its time derivative. Data from the auditory runs were
modeled by two regressors for each sentence, one capturing the activation to the
sentence itself (kernel = sentence duration) and the other capturing the acti-
vation during the reflection period (4-s rectangular kernel). We then defined
subject-specific contrasts over specific sentences, either comparing the activation
evoked by any two subsets of sentences (during sentence presentation or during
the postsentence reflection period) or evaluating the impact of a continuous
variable, such as subjective difficulty, on a subset of sentences. Regressors of
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noninterest included the six movement parameters for each run. Within each
auditory run, two additional regressors of noninterest were added to model
activation to the auditory beeps and to the button presses.

For the second-level group analysis, individual contrast images for each of
the experimental conditions relative to rest were smoothed with an isotropic
Gaussian filter of 5 mm FWHM and, separately for visual and auditory runs,
entered into a second-level whole-brain ANOVA with stimulus category as
within-subject factor. All brain-activation results are reported with a clus-
terwise threshold of P < 0.05 corrected for multiple comparisons across the
whole brain, using an uncorrected voxelwise threshold of P < 0.001.
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