The AI2 system at SemEval-2017 Task 10 (ScienceIE): semi-supervised end-to-end entity and relation extraction

2020.12.9

Abstract

Task

ScienceIE shared task (SemEval-2017 Task 10) Entity and relation extraction from scientific papers

Model

Original: End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures Enhancements : semi-supervised learning via neural language models character-level encoding gazetteers extracted from existing knowledge bases model ensembles

Result

First in end-to-endentity and relation extraction

Second in the relation-only extraction

Original Model

• Traditional systems

Seperate: named entity recognition (NER) + relation extraction Joint: end-to-end modeling

Previous: feature-based structured learning

Information	Model
word sequence	bidirectional sequential LSTM-RNNs
dependency tree substructure	bidirectional tree-structured LSTM-RNNs

- Embedding Layer
- $v^{(w)}$ word embedding
- $v^{(p)}$ part-of-speech (POS) tags
- $v^{(d)}$ dependency types
- $v^{(e)}$ entity labels

• Sequence Layer -- entity detection

type position

$$h_t^{(e)} = tanh(W^{(e_h)}[s_t; v_{t-1}^{(e)}] + b^{(e_h)})$$

$$y_t = softmax(W^{(e_y)}h_t^{(e)} + b^{(e_y)})$$

sequence labeling task (BILOU) BiLSTM: $s_t = [\vec{h}_t; \vec{h}_t]$ input: $x_t = [v_t^{(w)}, v_t^{(p)}]$

- Dependency Layer
- -- relation classification

$$egin{aligned} h_p^{(r)} &= ext{tanh}\left(W^{(r_h)}d_p + b^{(r_h)}
ight) \ y_p &= ext{softmax}\left(W^{(r_y)}h_t^{(r)} + b^{(r_y)}
ight) \end{aligned}$$

$$d'_{p} = [d_{p}; \frac{1}{|I_{p_{1}}|} \sum_{i \in I_{p_{1}}} s_{i}; \frac{1}{|I_{p_{2}}|} \sum_{i \in I_{p_{2}}} s_{i}]$$

 $d_p = [\uparrow h_{pa}; \downarrow h_{p1}; \downarrow h_{p2}]$ input: $x_t = [s_t; v_t^{(d)}; v_t^{(e)}]$

type

direction

(negative relation)

wrong entities no relation

Task overview

• Extraction

Typed entities : Task / Material / Process Relations : Hyponym-of / Synonym-of

• Running example

"Here, we consider a radical pair in which the first electron spin is devoid of hyperfine interactions, while the second electron spin interacts isotropically with one spin-1 nucleus, e.g.nitrogen." 在这里,我们考虑一个激进的对,其中第一个电子自旋没有超细相互作用,而第二个电子自旋与一个自旋-1核(如氮)等向相互作用。

Process : electron spin Material : spin-1 nucleus 、 nitrogen Hyponym-of : "nitrogen","spin-1 nucleus"

System description

- Text preprocessing spaCy
- Label encoding: BILOU
- B: 'beginning' (signifies beginning of an NE)
- I : 'inside' (signifies that the word is inside an NE)
- O: 'outside' (signifies that the word is just a regular word outside of an NE)
- L : 'last' (signifies that the last word of an NE)
- $U:\ 'unit'(signifies that the single word is an NE)$

directional relation (Hyponym-of) undirectional relation (Synonym-of)

Entity model

Token representation

using unlabeled data to learn feature representations of individual word types

 $x_k = [c_k; w_k]$

- c_k : character based representation (CNN) with a filter width of 3 characters
- w_k: token embeddings pretrained GloVe word embeddings

• Neural language model

learn feature representations of words in a particular context

forward LM & backward LM trained seperately

 $\mathbf{h}_{k}^{LM} = [\overrightarrow{\mathbf{h}}_{k}^{LM}; \overleftarrow{\mathbf{h}}_{k}^{LM}]$

Entity model

• Sequence tagging model

predict entity mentions of each type

Output of the 2nd LSTM layer:

 h_k : predict a score for each possible tag

CRF: conditional random field

in the relation model

Left and right entities

 $x_t = [h_k; v_t^{(e)}]$

Obatain a fixed size encoding: dependency tree

-- syntactic head of the entity

• Syntactic and sequential path

Token representation
 context-sensitive embedding h_k
 context-insensitive embedding
 POS tags
 dependency types (node and its direct head)

2) Syntactic path

shortest path in a dependency tree between the heads of the left and right entities

3) Sequential path

tokens between the two heads in the sentence

• Relation gazetteer features

Wikipedia and freebase

Three features :

acronym

suffix

exact copy of the other

• Entity model ensemble

averages the label predictions at each position

• Relation model ensemble

only predicts a positive relation if 50% of the individual models predict the same relation

Model	F_1
Our best model without language model	49.9
Our best model with language model	
Our 15-model ensemble	55.2

Table 1: Development set entity only F_1 comparison.

Team	End-to-end	Entities	Relations
Ours	0.43	0.55	0.28
Team_24	0.42	0.56	-
Team_21	0.38	0.50	0.21
Team_19	0.37	0.51	0.19
Team_14	0.33	0.47	0.20

Table 2: Final test set F_1 for top five teams in Scenario 1, end-to-end extraction.