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Education shapes the structure of semantic memory and
impacts creative thinking
Solange Denervaud 1,2✉, Alexander P. Christensen 3, Yoed. N. Kenett 4 and Roger E. Beaty 5

Education is central to the acquisition of knowledge, such as when children learn new concepts. It is unknown, however, whether
educational differences impact not only what concepts children learn, but how those concepts come to be represented in semantic
memory—a system that supports higher cognitive functions, such as creative thinking. Here we leverage computational network
science tools to study hidden knowledge structures of 67 Swiss schoolchildren from two distinct educational backgrounds—
Montessori and traditional, matched on socioeconomic factors and nonverbal intelligence—to examine how educational
experience shape semantic memory and creative thinking. We find that children experiencing Montessori education show a more
flexible semantic network structure (high connectivity/short paths between concepts, less modularity) alongside higher scores on
creative thinking tests. The findings indicate that education impacts how children represent concepts in semantic memory and
suggest that different educational experiences can affect higher cognitive functions, including creative thinking.
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INTRODUCTION
Early experience is of paramount importance for later cognitive
and emotional outcomes1. In this period of high brain plasticity2,3,
children’s knowledge is acquired efficiently through statistical
learning4,5 and it is significantly shaped by interactions with the
environment6. Despite the importance of experience on semantic
knowledge (i.e.,7), few researches have focused on the role of
school education in influencing not only how children acquire new
knowledge, but also how they come to represent knowledge in
long-term (semantic) memory. The organization of semantic
memory plays a key role in higher cognitive functions, such as
creative thinking8. In the present research, we apply network
science methods to investigate how different educational
approaches, namely traditional and Montessori approaches, shape
5–12-year-old children’s internal knowledge representation in
semantic memory (i.e., concept learning) and their ability to think
flexibly and creatively.
Montessori and traditional education can both be of high

quality, but their approaches differ with respect to concept
learning—an important feature of cognitive development sup-
porting the acquisition of new vocabulary and crystallized
knowledge. Montessori education focuses on self-directed and
uninterrupted learning activities that children perform within
multi-age classes9,10. Children in these classes routinely engage in
interdisciplinary, discovery-based work to learn new concepts
(e.g., draw the outline of the continents, write their names, and
classify them according to their population size), such as
conducting experiments in and out of the class, often with
minimal (but guiding) feedback from teachers. According to the
Swiss educational plan, traditional education focuses on teacher-
directed learning activities, introducing successively different
topics (e.g., language, writing, geography, math) that children
perform within single-age classes. Children in these classes are
asked to learn and memorize concepts (i.e., rote learning),
knowledge on which they are regularly tested and evaluated

with grades (starting from 6 years of age). When comparing
Montessori and traditional educational approaches, Montessori
classes have been shown to promote improved academic
outcomes, socio-emotional learning, and divergent and/or con-
vergent creativity11–15. Such effects raise questions about how
educational experiences shape children’s fundamental cognitive
processes, such as concept learning.
Environmental interaction plays an essential role in how

children first learn about words and concepts7. For example,
parents’ socioeconomic level is tightly related to preschoolers’
vocabulary level16, primarily until around the age of six17. As the
child develops, the experience within the environment assumes
an important part in the continuation of concept learning18.
Indeed, semantic memory shows a 1.6 fold increase across
elementary school years, with ~3200 root words being acquired
between the second and the fifth grades19. During this period, the
child learns not only the root word and its meaning, but how
these words relate to other words, establishing deep knowledge
representation20. During this crucial period of 6 to 12 years, the
child encodes on average 800–900 new concepts a year,
representing the building blocks of knowledge that form an
interconnected structure in semantic memory21. Individual
differences in semantic representation are known to impact many
important cognitive abilities (e.g., creative thinking) by influencing
how knowledge is retrieved from memory22.
In recent years, a new field of cognitive network science has

prompted a paradigm shift in the study of higher cognitive
processes23,24. Cognitive network methods can be used to
estimate the organization of concepts in semantic memory. For
example, using a simple verbal fluency task, where participants
name as many words as they can for one given category in 1 min
(e.g., foods), it is now possible to estimate an individual’s
knowledge representation using computational network science
tools25. Semantic network analyses depict each concept (name) as
a node, and relations between them as edges. Thus, the less
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related the concepts, the longer the edges (e.g., pear and avocado
vs. pear and apple), but also the slower the participant will be to
report their relationship24.
Network science measures can provide insight about differ-

ences in semantic network structure. For example, network
measures can quantify whether concepts tend to be more isolated
or closely related to others (clustering coefficient; CC), whether
information flow is more efficient (average shortest path length;
ASPL), or whether concepts’ integration is rigid vs. flexible
modularity; Q;24. Beyond simply representing semantic memory,
network science tools allow researchers to study the psychological
and behavioral consequences of different memory structures. For
example, adults with a more efficient semantic network structure
—characterized by high connectivity (higher CC, lower Q) and
short path lengths between concepts (lower ASPL)—show higher
levels of the personality trait openness to experience, i.e., the
tendency to seek out and enjoy novel experiences25.
Moreover, it has been robustly demonstrated that higher

creative individuals (assessed via self-reported achievement and
cognitive measures) also show this flexible network structure,
which is likely conducive to creative thinking due to “closer”
representation of otherwise “distant” concepts in semantic
memory8. In contrast, less creative individuals show a more rigid
memory structure, marked in part by high modularity of concepts
into canonical subcategories in memory (e.g., animals). Together,
these data suggest that a more flexible knowledge representation
is associated with important outcomes, with likely implications for
cognition and behavior across the lifespan.
How do concepts come to be represented differently in

semantic memory? And what is the initial source of individual
differences in semantic memory structure? In the present research,
we examine one potential but underexplored source of variation:
education. As a test case, we focus on children from Montessori
classes and compare them to children from traditional classes. To
account for a possible selection-bias of private Montessori classes
with high pedagogical standards, public traditional classes were
selected among high socioeconomic city areas and selected for
their high-quality teaching practices (teachers trained in
renowned pedagogical centers). Although typically developing
children—from similar socioeconomic backgrounds—may not
show notable differences on tests of short-term retention and
cognitive ability, their dynamic knowledge representation may
show incremental change over time26. Because children from
Montessori classes learn through self-directed engagement in
naturalistic and interdisciplinary activities, we hypothesize that
semantic concept integration would diverge from the more
traditional, adult-directed curriculum, in being more enriched
(higher CC), interconnected (shorter ASPL), and flexible (lower Q).
Given the long-term behavioral and cognitive implications

associated with memory structure, and based on previous findings
in adults27, we specifically addressed the question of whether
variation in semantic memory structure tracks cross-sectional
improvements in other cognitive abilities over time, with a focus
on creative thinking. According to previous work11,28, we expect
children from Montessori classes to present higher convergent
and divergent creative skills than children from traditional classes.
For the first time, we therefore examine whether educational
differences shape knowledge representation and corresponding
creative abilities.

RESULTS
Participants
We began by testing for potential group differences between
children from Montessori and traditional classes. Across gender,
age, nonverbal intelligence, and parental SES, no significant
differences were found, revealing comparable groups (Table 1).

Verbal fluency
Having established that the two groups were demographically
and intellectually similar, we next assessed their performance on
the verbal fluency task (animal category; Table 2). While children
experiencing Montessori education produced a similar number of
responses (M= 16.4, SD= 5.0) than their peers experiencing a
more traditional education (M= 14.8, SD= 5.8), they gave more
unique responses (105) than their peers from traditional classes
(87; p= 0.023). Of these unique responses, children experiencing
Montessori education provided more unique responses that the
children experiencing traditional education did not provide (37)
than vice versa (19).

Creativity assessment
Next, we tested whether education influenced creative thinking
(Table 2). We found that the groups differed on both divergent
and convergent creativity tests, with the Montessori sample
scoring on average higher (Mdiv= 9.6, Mconv= 5.3) than the
traditional sample (Mdiv= 7.1, Mconv= 2.6), t (64)= 3.24, p= 0.02,
d= 0.58, and t (64)= 7.10, p < 0.001, d= 1.74, respectively (Table 2).
Divergent and convergent creativity scores were positively
correlated with the total number of responses on the verbal
fluency test, r= 0.27, p= 0.03, and r= 0.36, p= 0.003, respec-
tively, replicating past work29.

Network analysis
Finally, we estimated the semantic networks of the Montessori
and traditional groups (Fig. 1). The networks were visualized
(Fig. 1) using the Cytoscape software30. In these 2D visualizations,
nodes are represented by the respective circles and edges
between them are represented by lines. Since these networks
are undirected and weighted, the edges convey symmetrical (i.e.,
bidirectional) similarities between two nodes. A qualitative
inspection of these network visualizations illustrates that the
semantic network of the Montessori group is more condensed
(nodes are closer together) and less modular (the network has
fewer subcomponents) than the semantic network of the
traditional group.
To statistically validate our results, we incorporated two

complimentary statistical significance testing methods. First, we
compared the measures of our empirical semantic networks to
those of randomly generated networks. Across all three networks,
the simulated random network analysis revealed that the
empirical network measures (ASPL, CC, and Q) for both groups
were statistically different from random networks (all p’s < 0.001).
Second, case-wise bootstrap network analyses evaluated the

differences in the network measures between both groups (Fig. 2).
An independent-groups t test revealed that the Montessori-
schooled children had a significantly higher CC (M= 0.707,

Table 1. Demographic and nonverbal intelligence data for the
Montessori—(M) and traditionally—(T) schooled children.

Group X2 or
t test

p values Cohen’s d

M T

N (girls) 36 (16) 31 (16) 0.34 0.58

Age [years] 9.1 (2.3) 8.6 (2.0) 1.03 0.31 0.25

min, max 5.5–14.6 5.2–12.3

Nonverbal
Intelligence
[score]

33.2 (3.45) 32.2 (3.59) 2.28 0.30 0.81

SES [score] 7.03 (1.41) 6.83 (1.46) 0.54 0.59 0.14

Mean and SD in parentheses.
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SD= 0.01) than the traditional-schooled children (M= 0.701,
SD= 0.01), t (1998)= 11.33, p < 0.001, d= 0.51. Additionally, the
Montessori-schooled children had a significantly lower ASPL (M=
3.07, SD= 0.26) than the traditional-schooled children (M= 3.12,
SD= 23), t (1998)=−5.32, p < 0.001, d= 0.24. Finally, the
Montessori-schooled children had a significantly lower Q (M=
0.582, SD= 0.03) than the traditional-schooled children (M=
0.589, SD= 0.02), t (1998)=−7.07, p < 0.001, d= 0.32. Thus,
compared to the traditional group, the semantic network of the
Montessori group was more interconnected (higher CC), with
shorter paths between concepts (lower ASPL) and fewer
subcommunities (lower Q).

DISCUSSION
Despite the central importance of education for child development,
whether educational differences impact how children represent

knowledge has remained unknown. The present research provides
the first evidence to indicate that education shapes both the
structure of children’s semantic memory and their ability to think
creatively. As a test case, we focused on children experiencing a
common child-centered-constructivist education (i.e., Montessori)
versus traditional education. While both can be of high quality, their
approach to concepts learning differ in many aspects. We found that
compared to children experiencing a traditional education, children
experiencing Montessori education showed a more “flexible”
semantic network structure, characterized by higher connectivity
and shorter paths between concepts, as well as lower modularity—a
network structure that is conducive to connecting remotely-
associated concepts when thinking creatively8. Consistent with this
view, the Montessori class showed higher scores on tests of both
divergent and convergent creative thinking. Critically, the groups
were matched on nonverbal intelligence and demographic/socio-
economic factors, indicating that differences in semantic network

Fig. 1 Semantic Network. 2D Visualization of the semantic networks of the Montessori and traditional groups.

Fig. 2 Case-wise bootstrapping analysis for the Montessori and traditional groups. Clustering coefficient (CC, left), average shortest path
length (ASPL, center), and modularity (Q, right). X-axis: school group; Y-axis: dependent variables (CC, ASPL, and Q; error bars denote standard
error). The range of scores on the different Y-axes are measure-specific and should not be compared across measures. Furthermore, the Y-axes
across the three measures do not start at zero as to clarify the difference in measures across the two groups.

Table 2. Verbal fluency and creativity data for the Montessori—(M) and traditionally—(T) schooled children.

Group t test or X2 p values Cohen’s d or Phi

M T

Mean total number of responses 16.4 (5.0) 14.8 (5.8) 1.23 0.225 0.30

Number of unique responses 37/105 19/87 5.16 0.023 0.28

Creativity divergent 9.6 (3.7) 7.1 (5.1) 2.34 0.02 0.58

Creativity convergent 5.3 (1.7) 2.6 (1.3) 7.10 <0.001 1.74

Mean and SD in parentheses.
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and creative thinking are specific to school education and not due to
extraneous group differences. The findings suggest that educational
practices have an impact on the structure of semantic memory, with
implications for higher cognitive functions such as creativity.
The findings may reflect differences in how knowledge is taught

at school. In a more interdisciplinary and active way of learning,
concepts may be perceived as more dynamic and connected,
offering children a more flexible, broader understanding and
interpretation of concepts—beyond what they may learn in a
more directed education (leading to more passive learning) that
focuses on distinct disciplines successively. Differences in knowl-
edge representation may also be related to other factors, such as
free movement and active learning, found in Montessori educa-
tion, or the uninterrupted work (providing no time limit or stress
to embody concepts), peer-peer teaching (rehearsal of concepts,
impact on attentional processes), and multi-age classes (higher
diversity in language heard). Together, each of these educational
features may gradually come to shape and/or train the structure of
children’s semantic networks, with continued expansion and
integration of networks with learning over time31,32. Future work is
critical to better decipher which factors provide children the
opportunity to grow enriched knowledge representation,
and why.
With respect to creativity, we found that education differences

played a significant role in affecting children’s creative thinking.
Across both divergent and convergent creativity tests, children
from Montessori classes showed higher scores compared to their
peers from affluent traditional classes, corroborating previous
studies on creativity in Montessori students11,12. Similar to
semantic abilities, specific teaching practices found in Montessori
classes may foster higher creativity skills, such as the error-and-
trial approach (children need to solve problems by and for
themselves), the peer-peer tutoring in multi-age classes (higher
social diversity, different points of view), the multisensory didactic
material (using more than two senses to learn and later create),
the absence of time pressure (uninterrupted three working hours),
and the project-based learning (self-directed exploration). Which
of these factors explain higher creative thinking is not yet known.
However, we suspect that it may even be the combination of
these, and may be even other/unknown factors, that allow
children to access and train their creative abilities. Future work
is crucially needed in that direction.
For now, the semantic network and creativity results are

consistent with studies in adults, which have found that high
creative ability is characterized by the same flexible network
structure observed in Montessori students from the current study,
i.e., high connectivity and short paths between concepts, with less
modularity of concepts into discrete subcommunities8,33. This
flexible network structure is thought to be conducive to creative
thinking, allowing concepts to be more efficiently accessed and
flexibly combined, compared to a network structure that is more
spread out and modular8. An important direction for future
research will be to directly examine the interactions between
education, semantic structure, and creative thinking. Importantly,
given the group-based approach to modeling semantic networks,
the current study could not link individual network metrics to
creativity scores. Future research should conduct longitudinal
analyses to examine how semantic network structure relates to
the development of creative thinking over time in different
educational contexts, and to expand this investigation to other
higher-level cognitive abilities (e.g., language skills in general).
Although we could not directly link semantic network metrics

with creativity scores, we found that children from Montessori
classes, despite an average number of responses similar to their
peers from traditional classes (which all correlated with creativity
scores), produced more unique verbal fluency responses, poten-
tially reflecting a greater depth and breadth of semantic knowl-
edge (at least within the animal category). While Montessori

education is not known for promoting learning about animals
more than Swiss traditional classes (i.e., specific material exposed
in the environment), this finding corroborates previous studies
reporting the early acquisition of reading skills in Montessori
schoolchildren, and later higher outcomes in language
tasks12–14,34. Montessori education offers a language curricula
that starts as early as the children gain curiosity for the sounds and
letters, around 3.5 years of age9,10. Children in these classrooms
are given educational materials to learn real-life concepts by
associating names with objects (e.g., specific leaf shape with
“obovate”). Over time, the children learn to categorize concepts
(e.g., plant phylogeny), while conducting experiments in and out
of the classroom (e.g., seeding plants, collecting leaves). It may be
that while children’s abstraction and semantic memory grow and
mature, a form of experience-dependent plasticity comes to
deepen their understanding of concepts, dynamically shaping
semantic networks as new concepts are learned and connections
are made between them. Enriched language curricula—with self-
directed and naturalistic activities that introduce successive levels
of concept knowledge—may help children optimally train and
expand the breadth and depth of their semantic knowledge
(perception, conceptualization, generalization). The structure of
semantic networks may also benefit from the diversity of social
interactions found in multi-age classes (such as Montessori), where
fostered peer-to-peer teaching may hasten the assimilation of
vocabulary35. Future research should identify the relative con-
tributions of classroom curricula and social factors in influencing
the development of semantic networks and related cognitive
abilities, such as creativity.
The present study has some caveats. First, our study relies on a

cross-sectional design. While these results constitute early
evidence that semantic networks are highly permeable to
educational experience, longitudinal studies are needed. Second,
our study included only one semantic category (animals).
However, it would be of interest to study other semantic domains,
based on child-centered interests (i.e., leisure activities, hobbies)
to explore “out-of-class” knowledge representation, and to assess
any transfer effects from academic knowledge representation to
self-directed learning of new concepts (i.e., do children learn a
pattern of semantic organization, or do they learn a model of
ideas independently from each other). Finally, we cannot infer
which features from the Montessori education help children to
build a flexible and extensive semantic network. Future research
could investigate specific educational features, such as early
training in reading, learning concepts from active and naturalistic
activities, and peer-to-peer learning. These studies can shed light
on how educators can foster “flexible” knowledge representation
within schools, creating learning environments that promote deep
learning, and creativity.

METHOD
Participants
A total of 67 children participated in the current study (Mage= 9.31, SD=
2.23, 47.8% girls) through the University Hospital of Lausanne research
pool as part of a broader research project on education and neurocog-
nitive development. Children were compensated with a ~30 USD gift
voucher for completion of the study. Inclusion criteria were schooling
system (participants had to be enrolled in Montessori or in traditional
classes from the early years on, in the case of the youngest children, or for
at least 3 years), age (5–14 years of age); exclusion criteria were parental
report of learning disabilities or sensory impairment. To account for
variability in our measures due to nonverbal intelligence, or socioeconomic
background, we controlled for between-group homogeneity in nonverbal
intelligence (black and white short version of the Progressive Matrices36)
and family socioeconomic status (both parents’ education levels (score
from 1 to 5) and current job (score from 1 to 4); scores were summed and
averaged between both parents (max 9), with higher scores denoting
higher SES).
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A chi-square test of goodness-of-fit was performed to determine
whether the gender ratios were equal between the Montessori and
traditional group of children. In addition, we conducted t tests
(independent or Welch’s, according to the preliminary data check with
Q–Q plots and Levene’s test) with a 95% confidence interval (CI) for the
mean difference to test for significant differences between the groups on
demographic variables and nonverbal intelligence.

MATERIALS
Verbal fluency
Children completed verbal fluency task. Category verbal fluency
tasks have been widely used to efficiently assess semantic
network organization37. Consistent with traditional task adminis-
tration38, each child had 60 s to name as many animals as he/she
could. Based on previous work in children, we targeted the animal
category39. Children spoke their responses out loud, which were
recorded (and later transcribed) by an experimenter. For each
child, fluency data was preprocessed using the SemNA pipeline in
R37. Repetitions or variation on roots were converged and non-
category members were excluded from the final analysis. Number
of responses per participant were summed (total number of
responses). An independent t test was used to determine whether
both groups differ on average number of responses and number
of unique responses, permitting a test of whether education
affects the types of words that children retrieve when searching
semantic memory.

Creativity assessment
To assess creative thinking, children completed divergent and
convergent creativity tasks from the Evaluation of Potential
Creativity40. Divergent thinking reflects the ability to think of ideas
that differ from one another; convergent thinking reflects the ability
to think of a single creative solution. Performance on such creative
thinking tasks has been shown to predict both academic41 and
creative42 achievement. In the divergent thinking task, the child was
asked to draw as many different drawings as possible from one
imposed abstract form (i.e., incomplete shape), within 10min. The
final score was the sum of all valid drawings. In the convergent
thinking task, the child had to select three different abstract forms
out of eight to create an original drawing that combined them,
within 15min. Three blind judges scored the drawings for originality
following the EPoC scoring manual (inter-rater agreement; Krippen-
dorff’s alpha= 0.905). Independent t tests were computed on each
creativity score (divergent and convergent) to test for between-
group differences. Pearson’s correlations were computed between
each creativity score and the verbal fluency metrics to test whether
creative thinking relates to the quantity and quality of words
retrieved from semantic memory.

Network analysis
The semantic verbal fluency data of both groups were analyzed
using a semantic network approach43,44. In this approach, each
node represents a category exemplar (e.g., frog) and edges
represent associations between two exemplars. These associations
are the tendency of the sample to generate exemplar b (e.g., toad)
when they have also generated exemplar a (e.g., frog). All network
analyses were conducted in R using a publicly-available pipeline to
analyze semantic fluency data as networks37, with the following
steps:

Semantic network estimation. The processed data were trans-
ferred into a binary response matrix, where columns represent the
unique exemplars given by the sample and rows represent
participants; the response matrix is filled out by 1 (if an exemplar
was generated by that participant) and 0 (if that exemplar was not

generated). To control for confounding factors (such as different
nodes or edges in both groups), as in previous studies25,43, the
binary response matrices only include responses that are given by
at least two participants in each group. Then, to avoid the two
groups including a different number of nodes, which may bias
comparison of network parameters, responses in the binary
matrices were equated, so that the networks of both groups in
each sample are compared using the same nodes37.
Next, we computed a word association matrix for each group

using the cosine similarity. The cosine similarity is commonly used in
related to Pearson’s correlation, which can be considered as the
cosine between two normalized vectors. With the cosine similarity
measure, all values are positive ranging from 0 (two responses do
not co-occur) to 1 (two responses always co-occur). For both groups,
each element in the word association matrix, Aij, represents the
cosine similarity or the co-occurrence between response i and j.
Finally, using these word association matrices, we applied the

triangulated maximally filtered graph TMFG37; to minimize noise and
potential spurious associations. The TMFG method filters
the word association matrices to capture only the most relevant
information (i.e., removal of spurious associations and retaining the
largest associations) within the original network. This approach
retains the same number of edges between groups (i.e., 3n–6, where
n equals the number of responses), which avoids the confound of
difference network structures being due to a different number of
edges43. This resulted in a 68 nodes network with 198 edges for
both groups.

Semantic network analyses. The SemNA pipeline in R37 was used
to compute the CC, ASPL, and Q measures for both groups.
Clustering Coefficient (CC) refers to the extent that neighbors of a
node will themselves be neighbors (i.e., a neighbor is a node i that
is connected through an edge to node j). Higher clustering
coefficient indicates a more interconnected semantic network24.
Average Shortest Path Length (ASPL) refers to the average shortest
number of steps (i.e., edges) needed to traverse between any pair
of nodes; the higher the ASPL, the more spread out a network is.
Previous research has shown that the ASPL in semantic networks
corresponds to participants’ judgments as to whether two
concepts are related to each other24. Modularity (Q) estimates
how a network breaks apart (or partitions) into smaller sub-
networks or communities24. Q measures the extent to which the
network has dense connections between nodes within a
community and sparse (or few) connections between nodes in
different communities. Thus, the higher Q, the more the network
breaks apart to subcommunities. Such subcommunities can be
thought of as subcategories in a semantic network (e.g., farm
animals in the “animals” category). Previous research has shown
that modularity in semantic networks is inversely related to a
network’s flexibility8.

Statistical analysis. We applied two complementary approaches
for comparing the networks: comparisons against random net-
works and bootstrap network comparisons. Our first approach,
comparisons against random networks, is used to determine
whether the network measures (ASPL, CC, and Q) observed in the
groups’ networks are different from what would be expected from
a random network with the same number of nodes and edges45.
This approach iteratively simulates Erdös–Rényi random networks
(e.g., 1000 networks) with the same number of nodes and edges
with a fixed edge probability46. For each simulated random
network, network measures (i.e., CC, ASPL, and Q) are computed,
resulting in a sampling distribution of these measures for the
random network. The empirical group network measures are then
compared against the respective distributions of the random
network measures. The Erdös–Rényi random network model does
not make any assumptions regarding the structure of the network,
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which makes it a useful null model to test against46. That is, it tests
whether the network structure for a specific network measure
could be generated from a random network model.
Second, for each dataset, we used a bootstrapping approach to

simulate and compare semantic networks of the two groups25,43.
We applied the case-wise bootstrap method, which resamples
from the original sample with replacement. Each bootstrap sample
has as many participants as the original sample but with some
participants being included more than once and others not being
included at all. Networks are estimated on each bootstrap sample
following the network construction approach described above.
Network measures are then computed for these networks. This
process repeated iteratively for 1000 times.
Similar to the comparisons against random networks, these

bootstrapped networks form a sampling distribution of the
network measures for both groups, but solely based on the
empirical data. Independent-group t tests are then applied to
statistically examine the difference between the distribution of the
three network measures (CC, ASPL, and Q) across both groups.
Cohen’s d effect sizes are reported following47: small= 0.20,
moderate= 0.50, and large= 0.80.

Procedure
This study was approved by the ethical committee of the CER-
Vaud (Switzerland). Written informed consent to take part in the
study was obtained from parents and oral consent from children,
who acknowledged that they were free to withdraw at any time
without penalty. Group variables (e.g., SES) were collected through
online questionnaires completed at home after the experiment.
Verbal fluency and creativity data were collected by the
experimenter in school, in a dedicated room, with the child
seated at a table next to the experimenter. Each child was
randomly assigned to complete one of the two tasks first.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Data and materials for this study have not been made publicly available, but can be
shared upon request. The design and analysis plans were not preregistered.
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